
Julia for robotics: simulation and real-time control in a
high-level programming language

Twan Koolen1 and Robin Deits1

Abstract—Robotics applications often suffer from
the ‘two-language problem’, requiring a low-level lan-
guage for performance-sensitive components and a
high-level language for interactivity and experimen-
tation, which tends to increase software complexity.
We demonstrate the use of the Julia programming
language to solve this problem by being fast enough
for online control of a humanoid robot and flexible
enough for prototyping. We present several Julia
packages developed by the authors, which together
enable roughly 2× realtime simulation of the Boston
Dynamics Atlas humanoid robot balancing on flat
ground using a quadratic-programming-based con-
troller. Benchmarks show a sufficiently low variation
in control frequency to make deployment on the physi-
cal robot feasible. We also show that Julia’s naturally
generic programming style results in versatile pack-
ages that are easy to compose and adapt to a wide
variety of computational tasks in robotics.

I. Introduction
Modern robotics requires performing a vast array of

computational tasks, including online control, motion
planning, dynamic simulation, controller synthesis, and
stability analysis. These tasks in turn place a wide range
of constraints on the software packages used to perform
them. For example, online control tasks often have hard
real-time constraints, where it is critical not to exceed
a given time budget (e.g., one millisecond) per control
cycle. Typical online controllers for humanoid robots
require evaluating quantities related to the dynamics
of the robot subject to these real-time constraints. In
contrast, controller synthesis is done just once, offline,
but consumes the dynamics of the robot in symbolic
form, requiring computation with an entirely different
set of data types. In addition to this large variety of
computational tasks, there is a wide range of robotics
software users. Users may include students taking their
first course in robotics, as well as experts who require
high performance and rapid prototyping.

Currently, a standard approach to satisfying all of
these requirements is to write software packages in two
programming languages. Typically, a ‘fast’ programming
language like C or C++ is used to implement the lower-
level parts of a software package, while a dynamic, high-
level language like Python or MATLAB is used either
to write parts that do not have stringent performance
requirements, or to provide bindings to the low-level

1Twan Koolen and Robin Deits are with the Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA
02139, USA. {tkoolen, rdeits}@mit.edu.

Fig. 1. Visualization of Atlas using the MeshCat.jl Julia package.

parts. This approach provides ease of use for novice
programmers and productivity for rapid prototyping,
while retaining the option for power users to directly
interact with the lower-level parts. Examples of software
packages relevant to robotics that take this approach
include Bullet [1], Drake [2], and Tensorflow [3].1

The two-language approach has some drawbacks, how-
ever. First, users who start out prototyping their robotics
application in the ‘high-level’ language often need to
duplicate their efforts by porting code to the lower-level
language once they are satisfied with their prototype, a
tedious and error-prone process. Second, in our experi-
ence, maintaining a software package written in multiple
programming languages tends to cause a large amount
of developer overhead: the code bases for each of the two
languages have to be kept in sync, and a build system and
documentation have to be maintained for each language.

This so-called ‘two-language problem’ exists in many
fields with numerical computing needs, as recognized
by the developers of the Julia programming language
[5]. Julia is a relatively new high-level language that
promises the high programmer productivity and interac-
tivity of a dynamic language like Python in addition to
C-like performance. In this paper, we provide evidence
that supports this claim in the robotics domain. We
present a number of Julia software packages written by
the authors, and demonstrate that they can be used
to implement a typical quadratic-programming (QP)-
based low-level balancing controller for the humanoid
robot Atlas (e.g., [6], [7], [8], [9]) with low jitter in
control frequency. In addition, we present a new robotics

1A notable exception to this pattern is the nearly exclusive use
of Java by IHMC [4].

2019 International Conference on Robotics and Automation (ICRA)
Palais des congres de Montreal, Montreal, Canada, May 20-24, 2019

978-1-5386-6027-0/19/$31.00 ©2019 IEEE 604

Authorized licensed use limited to: National Formosa University. Downloaded on October 18,2020 at 08:55:17 UTC from IEEE Xplore. Restrictions apply.

simulation environment written almost entirely in Julia.
We will focus on the following packages:
• RigidBodyDynamics.jl, a pure-Julia rigid body dy-

namics library;
• MeshCat.jl, a web-based, remotely controlled visu-

alizer (see Fig. 1);
• RigidBodySim.jl, a simulation environment;
• Parametron.jl, a framework for formulating and ef-

ficiently solving instances of a parameterized family
of convex optimization problems;

• QPControl.jl, an implementation of a QP-based low-
level control algorithm for floating-base robots.

These packages should provide a solid foundation for
others roboticists to build on.

The remainder of the paper is structured as follows.
Section II provides an overview of the Julia language and
an initial assessment of its suitability for robotics appli-
cations. Section III presents the packages we have devel-
oped. Section IV lists benchmark results that demon-
strate the feasibility of Julia for online control of the
humanoid robot Atlas. Section V concludes the paper.

II. Julia for robotics
This section first provides a general overview of Julia

(II-A), followed by an assessment of its usability as a
programming language for robotics applications (II-B).

A. Overview of Julia
Although version 1.0 of Julia has been released only

very recently, the language has been under development
since 2009 [5]. Julia is distributed under the MIT license,
open source, and available free of charge. Julia is a
general-purpose programming language with a strong
focus on numerical computing, evidenced for example
by an extensive linear algebra module as part of the
standard library. Under the hood, Julia uses LLVM
[10] to generate native machine code. Julia is garbage-
collected and just-in-time (JIT)-compiled.

The Julia developers refer to the language as being
‘optionally typed’: the field types of data structures may
either be omitted or fully specified, with the latter option
typically resulting in better performance. Julia has a rich
type system that includes parametric types (similar to
C++ template classes) and strong type inference capa-
bilities that obviate the need to manually annotate the
type of every variable (similar to C++’s auto keyword).

Julia is not object-oriented, in the sense that types
do not contain associated methods. Instead, functions
are defined ‘outside’ the types, optionally using multiple
overloaded methods that accept different sets of argu-
ment types. At a call site, the method with the most
specific applicable type signature is selected based on the
types of all of the input arguments, an approach referred
to as multiple dispatch. Multiple dispatch in Julia is
efficient enough that it is used throughout the language
and ecosystem, with even the primitive arithmetic oper-
ations implemented in terms of multiple dispatch. This

provides a single framework allowing user-defined types
and functions to behave as performantly and naturally
as any built into the language.

Julia provides convenient features common to high-
level languages, such as built-in support for list com-
prehensions, generators, and parallelism. Julia also fea-
tures excellent support for functional programming, with
functions represented as first-class objects and efficient
higher-order functions that are used extensively through-
out the standard library. Julia borrows an important
feature from LISP: Julia code is represented as a data
structure in the language itself. This enables powerful
metaprogramming features, as it is straightforward to
generate Julia code in Julia without requiring a prepro-
cessor or a separate template system.

Julia’s LinearAlgebra module, part of its stan-
dard library, provides both low-level bindings to
BLAS/LAPACK libraries, as well as high-level abstrac-
tions built on top of these bindings. Julia ships with
OpenBLAS [11] by default, but can optionally be built
with Intel’s MKL [12] (also used by NumPy and MAT-
LAB). Doing so can result in modest performance
improvements. StaticArrays.jl [13], a third-party Julia
package, provides stack-allocated fixed-size arrays, simi-
lar to the Eigen C++ library [14].

The Julia community has so far developed over 1900
registered Julia packages, and has adopted unit testing
and continuous integration extensively.

B. Suitability for robotics applications

Our assessment will focus on two main areas: 1) usabil-
ity in terms of developer productivity and prototyping
capabilities, and 2) performance characteristics for high-
rate online control.

It is hard objectively measure whether Julia delivers
on its promise of high developer productivity and suit-
ability for prototyping. Instead, we will resort to listing
features that we think improve or detract from the user
experience. Positive features include Julia’s REPL (read-
eval-print-loop) for interactive use and the ability to
use Julia from Jupyter notebooks [15] for exploratory
programming and demonstrations. Developer overhead
related to supporting multiple operating systems is min-
imal compared to C++. Julia has a built-in package
manager, which facilitates composing various third-party
packages with user code and avoids much of the overhead
associated with maintaining a build system in other lan-
guages. Several plotting packages are available. Finally,
Julia’s documentation functionality combined with the
Documenter.jl package [16] makes it easy to generate
and deploy documentation. The main impediments to
developer productivity and interactivity are relatively
long compilation times and the limited caching of compi-
lation results between Julia sessions, resulting in frequent
recompilation to native code. The Revise.jl package [17]
may be used to partially mitigate this issue.

605

Authorized licensed use limited to: National Formosa University. Downloaded on October 18,2020 at 08:55:17 UTC from IEEE Xplore. Restrictions apply.

Performance characteristics for online control may
be assessed more objectively. In addition to average
throughput, a major requirement for high-rate online
control is low variation in the rate at which the controller
produces its output (jitter) [18]. Ideally, to provide so-
called hard realtime guarantees, there should be a guar-
anteed upper bound on jitter.

At first glance, the fact that Julia is a garbage-
collected language seems a major roadblock on the path
to its adoption for online control. Julia employs a stop-
the-world garbage collector (GC), meaning that no useful
work is done while garbage is collected. Although garbage
collectors with hard real-time guarantees do exist in
other languages [19], [20], Julia’s GC provides no such
guarantees. Furthermore, a trivial benchmark shows that
running a full garbage collector sweep without generating
any garbage takes around 46 ms, which would upper-
bound the achievable control rate to a mere 22 Hz.2
This implies that, currently, Julia’s garbage collector

should be disabled for online control purposes, which
in turn implies that dynamic memory allocation should
be avoided so as to not run out of memory. Hence,
our current approach is to completely avoid dynamic
allocation in code that is meant to be run in low-level
control loops (after an initial preallocation phase). This
includes evaluation of the dynamics, setting up and solv-
ing quadratic programs, and network communication.
This is a serious constraint, but it should be noted
that it is nontrivial to provide hard realtime constraints
in the presence of dynamic allocation in any language,
requiring e.g. a specialized memory allocator in C++
[21]. Avoiding dynamic allocation also has the added
benefit that it tends to improve performance.

Given the constraint that dynamic allocation should
be avoided, Julia has clear benefits over JVM-based
languages like Java. The standard JVM implementation
currently only provides the guarantee that instances of
a predefined set of primitive types are stack-allocated.
Julia additionally guarantees that immutable data struc-
tures (recursively) composed of such types are stack-
allocated. This feature is used extensively throughout the
Julia robotics code, allowing points, transforms, twists,
and other fixed-size quantities to be freely constructed
and used without requiring pre-allocation.

Julia’s JIT compilation model is also more suitable
to realtime control than Java’s. Whereas Java’s JIT
compiler optimizes hot code at runtime [22], a poten-
tial source of jitter, Julia by default guarantees that
functions are compiled to native code the first time
they are called with a given set of argument types,
providing more predictable behavior. While specialized
JVM implementations with real-time JIT compilation
and garbage collection capability are available [20], these

2We do note that soft realtime applications that perform dy-
namic memory allocation may be feasible, since an incremental
sweep takes only ~78 µs and a full sweep is typically not run unless
the program allocates significantly.

using RigidBodyDynamics
mechanism = parse_urdf("atlas.urdf", floating=true)
state = MechanismState(mechanism)
rand!(state)
result = DynamicsResult(mechanism)
dynamics!(result, state)

Fig. 2. RigidBodyDynamics.jl usage example: loading a mecha-
nism from a URDF and evaluating the dynamics at a random state.

solutions tend to have much lower throughput and/or a
prohibitively high price tag for research robotics [4].

Julia’s memory footprint is nontrivial, which may be
an issue for robots with limited computing resources. A
fresh Julia 1.1.0 session uses approximately 79 MB of
RAM on Linux, increasing to 153 MB after importing
the RigidBodyDynamics.jl package.

The PackageCompiler.jl package [23] can be used to
create standalone executables and dynamic libraries from
Julia code, potentially very useful for deployment to an
embedded platform as well as to improve productivity
by eliminating the need to recompile to native code.
However, it is at an early stage of development and
currently produces relatively big binaries.

III. Packages
This section presents a set of robotics-related Ju-

lia packages developed by the authors, which together
form a foundation for simulation and control (III-
A–III-E). All of the presented packages are MIT-
licensed. Each package provides Jupyter notebooks con-
taining usage examples. Some of the packages are part
of the JuliaRobotics GitHub organization [24], which
also incorporates packages for state estimation, SLAM,
and parameter estimation (not discussed in this pa-
per). Section III-F lists some other relevant packages
and Section III-G discusses the current state of dis-
semination. Links to the packages can be found at
github.com/tkoolen/julia-robotics-paper-code.

A. RigidBodyDynamics.jl
RigidBodyDynamics.jl is a dynamics library written

in pure Julia. See Fig. 2 for a basic usage example.
The library implements Featherstone-style recursive al-
gorithms for computing dynamics-related quantities [25].
RigidBodyDynamics.jl is similar in scope to RBDL [26],
RobCoGen [27], and Pinocchio [28], [29], and forms a
building block for applications such as simulation, tra-
jectory optimization, and model-based control.

The main design goals for the library were to be 1)
user-friendly, 2) performant, and 3) generic, in the sense
that the algorithms can be called with inputs of any
(suitable) scalar types, not just floating point types.
Features of RigidBodyDynamics.jl include:

• singularity-free algorithms using redundant orienta-
tion representations [30];

606

Authorized licensed use limited to: National Formosa University. Downloaded on October 18,2020 at 08:55:17 UTC from IEEE Xplore. Restrictions apply.

• support for closed-loop mechanisms (loop joints),
including Baumgarte constraint stabilization [31];

• a specialized Munthe-Kaas-style differential equa-
tion integrator for correct numerical integration
of dynamics on manifolds that arise from e.g.
quaternion-parameterized floating joints [32];

• a parser and writer for the URDF format [33]
• various methods for composing mechanisms and ma-

nipulating their kinematic graphs, such as conver-
sion to a maximal coordinates representation with
all spanning tree joints converted to loop joints;

• low-overhead reference frame annotations for dy-
namical quantities, with optional checks that ensure
that reference frames match before e.g. adding two
twists, a feature borrowed from [34];

• automatic reuse of intermediate computation re-
sults, so that e.g. computing the mass matrix and
a Jacobian in a certain configuration is faster than
computing computing each separately.

RigidBodyDynamics.jl includes algorithms for comput-
ing the mass matrix (composite rigid body algorithm),
inverse dynamics (recursive Newton-Euler), the con-
straint Jacobian for closed-loop mechanisms, and forward
dynamics (linear solve using a Cholesky decomposition of
the mass matrix, employing Julia’s LAPACK backend).

Support for mechanisms with contact is currently lim-
ited to penalty-based point-to-halfspace contacts using a
Hunt-Crossley-Hertz contact model with (stateful) vis-
coelastic Coulomb friction [35], [25].

The library is competitive with RBDL in terms of per-
formance, as demonstrated by the benchmark results in
Section IV-A. RigidBodyDynamics.jl’s few dependencies
include StaticArrays.jl for fixed-size matrix functionality
and LightXML.jl for URDF parsing.

A notable design decision was to implement the algo-
rithms in world frame, as opposed to the conventional
choice of using a body-frame implementation [25]. This
allows for better reuse of intermediate results, since
quantities transformed to a common coordinate system
are in a sense more valuable than quantities expressed in
body frame. It also allows the joints to be processed out-
of-order in some of the data passes performed in the main
algorithms. We exploit this fact by processing all joints of
the same type in separate loops, which leads to significant
performance improvements over an approach that uses
branching or virtual functions (in C++). Although not
currently implemented, this fact could potentially be
exploited further using parallelism.

RigidBodyDynamics.jl also exploits Julia’s metapro-
gramming and the ability to switch back and forth
between running and compiling code, by generating spe-
cialized code for the specific joint types present in a given
mechanism, an approach reminiscent of RobCoGen [27],
but all in the same language.

Similar to Pinocchio [28] and Drake [2], RigidBody-
Dynamics.jl’s dynamics algorithms are generic (type-
parameterized or templated), meaning that they may

be called with non-numeric input arguments. Tested
examples include evaluation of the dynamics in symbolic
form using the Julia bindings for SymPy [36], auto-
matic differentiation using ForwardDiff.jl [37], rigorous
interval propagation using IntervalArithmetic.jl [38], and
uncertainty propagation using Measurements.jl [39]. See
Section III-C for some examples.

B. MeshCat.jl

The MeshCat visualizer is designed to allow
lightweight, composable visualization of robots in
3D environments. MeshCat represents a scene as a tree
of geometries with associated transforms (i.e. an acyclic
scene graph [40]), allowing the visualizer to mirror the
tree structure of a robot mechanism. Composability is
ensured by allowing multiple robots to coexist within a
single scene simply by occupying different branches of
the scene tree. Cameras and light sources also occupy
nodes in the scene tree, allowing for unified control of
the robot and the visualizer itself.

To avoid requiring any binary dependencies, the UI
component of MeshCat is implemented in JavaScript
using the Three.js library [41], allowing the 3D visual-
ization to run entirely within a standard web browser.
The accompanying Julia package, MeshCat.jl, provides
an abstraction for communication with the visualizer
from Julia and integrates with the existing ecosystem
of geometry tools in Julia. The MeshCatMechanisms.jl
package [42] further extends MeshCat, allowing entire
RigidBodyDynamics.jl mechanisms to be automatically
added to the MeshCat scene tree, allowing real-time
visualization and animation of robot motions.

C. RigidBodySim.jl

RigidBodySim.jl is a simulation environment that uses
RigidBodyDynamics.jl for evaluation of the dynamics,
MeshCat.jl for (optional) 3D visualization, and packages
from the DifferentialEquations.jl ecosystem [43] for nu-
merical integration of the ordinary differential equations.
Fig. 3 shows the RigidBodySim.jl user interface during
a simulation of a mechanism inspired by Theo Jansen’s
Strandbeest [44] walking on flat ground.

The fact that both RigidBodyDynamics.jl and Differ-
entialEquations.jl are designed to work with arbitrary
input types leads to some unique features not present
in more conventional simulators like Gazebo [33]. For
example, it is easy to use integrators for stiff differential
equations that expect Jacobians of the dynamics, such
as the Rodas4P integrator from DifferentialEquations.jl,
since the integrator can simply evaluate the dynamics
with an input type that implements forward-mode au-
tomatic differentiation, provided by the ForwardDiff.jl
package [37]. Dedicated algorithms can compute these
Jacobians even faster [29], but having this work out of
the box showcases the power of Julia’s support for generic
programming.

607

Authorized licensed use limited to: National Formosa University. Downloaded on October 18,2020 at 08:55:17 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. Strandbeest model walking on flat ground, simulated
using RigidBodySim.jl and visualized using MeshCat.jl. The model
has 135 joints, including 42 loop joints and a floating joint, and
simulates at around 58% of realtime. Initial resolution of the loop
joint constraints was done using a gradient-based method (LBFGS)
from the optimization package Optim.jl [45], which again uses
ForwardDiff.jl to compute Jacobians of the kinematics. Available
at github.com/rdeits/StrandbeestRobot.jl.

Fig. 4. Uncertainty propagation based on linear error propa-
gation theory using Measurements.jl, an example of using Rigid-
BodySim.jl with nonstandard input types. An unactuated double
pendulum was simulated starting from initial joint angles q =
(qshoulder, qelbow) = (0.4 ± 0.05, 0.5 ± 0.05) radians (mean ± stan-
dard deviation) and zero initial velocity. The red line shows the
propagated mean of the elbow joint velocity, while the blue area
shows the propagated standard deviation.

Another feature enabled by pervasive generic program-
ming is uncertainty propagation through a simulation.
The Measurements.jl package provides the Measurement
type, which implements error propagation based on lin-
ear error propagation theory [39]. Fig. 4 shows the result
of a simulation started from an uncertain initial state
represented using Measurements.

RigidBodySim.jl inherits most of its features from its
dependencies and composition with third-party packages
such as ForwardDiff.jl and Measurements.jl that pro-
vide non-standard input types. Version 1.0.0 of Rigid-
BodySim.jl consists of only 760 lines of Julia code,
making it a good example of the ease with which Julia
packages can be combined to create useful applications.

RigidBodySim.jl features a PeriodicController
type, which can be used to simulate a digital controller
running at a fixed rate even when using a variable time
step integrator. This functionality was used to perform
controller-in-the-loop simulations of the Atlas robot.

D. Parametron.jl
Parametron.jl is a framework for formulating and ef-

ficiently solving instances of a parameterized family of
convex optimization problems. It is inspired by software
packages such as YALMIP [46], CVX [47], and Julia’s
JuMP [48], which take a high-level formulation of an
optimization problem and transform it to the appropriate
low-level description expected by one of a number of
supported solvers. Parametron.jl was built on top of
MathOptInterface.jl, the same solver interface used by
JuMP. However, Parametron.jl was written specifically
for the task of efficiently solving optimization problems
with a shared sparsity structure in a loop, by hooking
into the solvers’ problem modification and warm-starting
functionality. In this sense, Parametron.jl is akin to
CVXGEN [49]. Parametron.jl currently supports formu-
lating continuous and mixed-integer linear and quadratic
programs. With a suitable problem formulation and
solver, Parametron.jl can solve optimization problems
with zero dynamic memory allocation.

E. QPControl.jl
QPControl.jl implements tools to build QP-based con-

trollers in the style of [8] and [9], using RigidBody-
Dynamics.jl and Parametron.jl to set up and solve the
QPs. QPControl.jl exploits Parametron.jl’s support for
efficient problem modification, updating only the co-
efficients of constraints corresponding to the robot’s
current state rather than rebuilding the entire opti-
mization problem at each control step. QPControl.jl
provides an example momentum-based balancing con-
troller implementation similar to [8] and uses OSQP
[50] to solve the resulting QPs, but it can also be
used to implement other formulations and connect with
other solvers. QPControl.jl has been used to construct
general model-predictive control (MPC) optimizations,
including mixed-integer MPC for systems with contact
[51]. We are currently developing a humanoid walking
controller similar to [8] on top of QPControl.jl. See
github.com/tkoolen/julia-robotics-paper-code for
an early flat-ground walking simulation.

F. Other relevant packages
Additional tools for robotics in Julia include:
• LCMCore.jl: a Julia interface to the LCM library

[52], which handles the communication between the
robot’s control, planning, and perception processes;

• HumanoidLCMSim.jl: a framework for simulating
humanoid robots like Atlas, using separate simula-
tion and control processes to mimic the real-time
communication with the physical robot over LCM;

• RobotOS.jl (not developed by the authors): provides
a Julia interface to the ROS ecosystem [53].

G. Dissemination
While the presented packages are very new, they have

already been used by third parties to develop a novel

608

Authorized licensed use limited to: National Formosa University. Downloaded on October 18,2020 at 08:55:17 UTC from IEEE Xplore. Restrictions apply.

approach to control and parameter estimation [54], a
trajectory optimization library [55], and soft contact
models [56], as well as to teach a class at Boise State.

IV. Benchmarks
This section provides benchmark results for the

dynamics algorithms in RigidBodyDynamics.jl (IV-A)
and the balancing controller from QPControl.jl (IV-
B). All results were obtained on a desktop machine
with an Intel Core i7-6950X CPU @ 3.00GHz. The
code used to generate these results can be found at
github.com/tkoolen/julia-robotics-paper-code.

A. Dynamics algorithms
Table I shows benchmark results for some of the

dynamics-related algorithms implemented in RigidBody-
Dynamics.jl, compared to RBDL [26]. RBDL is a reason-
ably well-optimized C++ library based on Eigen [14],
a fast linear algebra library. RBDL was chosen as a
representative example; other libraries may be faster.
Results refer to a floating-base model of the version of
Atlas that was used during the DARPA Robotics Chal-
lenge finals. For RBDL, we used version 2.6.0 compiled
with g++ 7.3.0 using the CMake ‘Release’ build type,
with Eigen 3.3.4. For RigidBodyDynamics.jl, we used
RigidBodyDynamics.jl 1.4.0 on Julia 1.1.0 with flags -O3
and --check-bounds=no and StaticArrays 0.10.2. Ver-
sion information for other dependencies may be found in
the associated code repository. These timings show that
RigidBodyDynamics.jl is competitive with a state-of-the-
art C++ implementation in terms of raw performance.

RBDL and RigidBodyDynamics.jl use the same algo-
rithms for the mass matrix, dynamics bias, and inverse
dynamics, but RBDL implements the articulated body
algorithm for forward dynamics, which is not yet imple-
mented in RigidBodyDynamics.jl. This explains the per-
formance gap for forward dynamics. The ‘Mass matrix
+ dynamics bias’ entry is meant to demonstrate perfor-
mance gains made by reuse of intermediate computation
results (present in both libraries). Performance gains
by reuse are somewhat higher for RigidBodyDynamics.jl
compared to RBDL (35.4% vs. 13.7%), possibly due to
the world-frame implementation in RigidBodyDynam-
ics.jl (see Section III-A). Any fixed joints present in the
URDF were removed by lumping together the inertias of
bodies attached via fixed joints. The ‘Momentum matrix’
entry refers to computation of the centroidal momentum
matrix [57]. RBDL does not implement an algorithm
for this, but Wensing et al. report a runtime of 63.2
µs for their implementation of the algorithm used in
RigidBodyDynamics.jl and 10.5 µs when the mass matrix
is already given [58], albeit on a machine that is likely
slower.

After an initial preallocation phase, none of these algo-
rithms perform any dynamic memory allocation, thereby
completely sidestepping performance penalties and jitter
induced by the garbage collector.

TABLE I
Benchmark timings for dynamics-related algorithms.

Algorithm RBDL RigidBodyDynamics.jl
Mass matrix 8.46 µs 5.79 µs
Dynamics bias 6.02 µs 6.87 µs

Inverse dynamics 6.00 µs 5.83 µs
Mass matrix + dyn. bias 12.49 µs 8.18 µs

Forward dynamics 12.13 µs 19.46 µs
Momentum matrix N/A 5.42 µs

Fig. 5. Histogram of time difference between sending a state
message to the controller and receiving an actuator command
message from the controller.

B. Control
As noted in Section II-B, both high throughput and

low jitter are important requirements for online con-
trol. Fig. 5 presents a a histogram of control times,
including network communication over LCM, during a
simulation of Atlas balancing using the controller from
QPControl.jl. The data was collected during a 10-second
simulation, with the simulation rate artificially slowed to
approximately 1× realtime using periodic pauses. The
controller was run at a fixed rate of 300 Hz (in terms
of simulation time), which is sufficient for this type of
controller [8], [9]. Note that the LCM communication
layer is not a requirement, but it is representative of how
we would currently control the physical robot.

During this run, the minimum, median, and maximum
control times were 1.049 ms, 1.148 ms, and 1.869 ms,
respectively. Although there is more jitter than we would
like, all of the samples in this data-set would have made
the 300 Hz deadline. We also note that this benchmark
was performed on a standard desktop machine with no
special precautions taken to mitigate sources of jitter
(e.g., no realtime kernel patches).

V. Conclusion
We demonstrated that Julia can be used to solve the

two-language problem in the robotics domain, combining
excellent performance with flexibility and interactivity.
We presented a number of robotics-related Julia pack-
ages, together used to simulate Atlas balancing on flat
ground at 2× realtime rate. Benchmarks showed that
the rigid body dynamics package RigidBodyDynamics.jl
is competitive with a state-of-the-art C++ implemen-
tation, and demonstrated the feasibility of using these
packages for online control of a humanoid robot.

609

Authorized licensed use limited to: National Formosa University. Downloaded on October 18,2020 at 08:55:17 UTC from IEEE Xplore. Restrictions apply.

References
[1] E. Coumans and contributors, “Bullet Physics SDK: real-

time collision detection and multi-physics simulation for VR,
games, visual effects, robotics, machine learning etc.” 2006.

[2] R. Tedrake and the Drake Development Team,
“Drake: A planning, control, and analysis toolbox for
nonlinear dynamical systems,” 2016. [Online]. Available:
https://drake.mit.edu

[3] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,
M. Devin, S. Ghemawat, G. Irving, M. Isard, et al., “Ten-
sorflow: a system for large-scale machine learning.” in OSDI,
vol. 16, 2016, pp. 265–283.

[4] J. Smith, D. Stephen, A. Lesman, and J. Pratt, “Real-time
control of humanoid robots using OpenJDK,” in Proceedings
of the 12th International Workshop on Java Technologies for
Real-time and Embedded Systems. ACM, 2014, p. 29.

[5] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Ju-
lia: a fresh approach to numerical computing,” SIAM review,
vol. 59, no. 1, pp. 65–98, 2017.

[6] T. Koolen, J. Smith, G. Thomas, S. Bertrand, J. Carff,
N. Mertins, D. Stephen, P. Abeles, J. Englsberger, S. Mccrory,
et al., “Summary of team ihmc’s virtual robotics challenge
entry,” in Humanoid Robots (Humanoids), 2013 13th IEEE-
RAS International Conference on. IEEE, 2013, pp. 307–314.

[7] S. Feng, E. Whitman, X. Xinjilefu, and C. G. Atkeson,
“Optimization-based full body control for the darpa robotics
challenge,” Journal of Field Robotics, vol. 32, no. 2, pp. 293–
312, 2015.

[8] T. Koolen, S. Bertrand, G. Thomas, T. De Boer, T. Wu,
J. Smith, J. Englsberger, and J. Pratt, “Design of a
momentum-based control framework and application to the
humanoid robot atlas,” International Journal of Humanoid
Robotics, vol. 13, no. 01, p. 1650007, 2016.

[9] S. Kuindersma, R. Deits, M. Fallon, A. Valenzuela, H. Dai,
F. Permenter, T. Koolen, P. Marion, and R. Tedrake,
“Optimization-based locomotion planning, estimation, and
control design for the atlas humanoid robot,” Autonomous
Robots, vol. 40, no. 3, pp. 429–455, 2016.

[10] C. Lattner and V. Adve, “LLVM: A compilation framework for
lifelong program analysis & transformation,” in Proceedings
of the international symposium on Code generation and opti-
mization: feedback-directed and runtime optimization. IEEE
Computer Society, 2004, p. 75.

[11] Z. Xianyi, W. Qian, and Z. Yunquan, “Model-driven level
3 blas performance optimization on loongson 3a processor,”
in 2012 IEEE 18th International Conference on Parallel and
Distributed Systems. IEEE, 2012, pp. 684–691.

[12] E. Wang, Q. Zhang, B. Shen, G. Zhang, X. Lu, Q. Wu, and
Y. Wang, “Intel math kernel library,” in High-Performance
Computing on the Intel Xeon Phi. Springer, 2014, pp. 167–
188.

[13] JuliaArrays, “StaticArrays.jl,” 2018. [Online]. Available:
https://github.com/JuliaArrays/StaticArrays.jl

[14] G. Guennebaud, B. Jacob, P. Avery, A. Bachrach,
S. Barthelemy, et al., “Eigen v3,” 2010. [Online]. Available:
https://eigen.tuxfamily.org/

[15] T. Kluyver, B. Ragan-Kelley, F. Pérez, B. E. Granger, M. Bus-
sonnier, J. Frederic, K. Kelley, J. B. Hamrick, J. Grout,
S. Corlay, et al., “Jupyter notebooks-a publishing format for
reproducible computational workflows.” in ELPUB, 2016, pp.
87–90.

[16] JuliaDocs, “Documenter.jl,” 2018. [Online]. Available:
https://github.com/JuliaDocs/Documenter.jl

[17] T. Holy, “Revise.jl,” 2018. [Online]. Available:
https://github.com/timholy/Revise.jl

[18] M. Törngren, “Fundamentals of implementing real-time con-
trol applications in distributed computer systems,” Real-time
systems, vol. 14, no. 3, pp. 219–250, 1998.

[19] D. F. Bacon, P. Cheng, and V. Rajan, “The metronome: A sim-
pler approach to garbage collection in real-time systems,” in
OTM Confederated International Conferences" On the Move
to Meaningful Internet Systems". Springer, 2003, pp. 466–
478.

[20] G. Bollella and J. Gosling, “The real-time specification for
Java,” Computer, vol. 33, no. 6, pp. 47–54, 2000.

[21] M. Masmano, I. Ripoll, A. Crespo, and J. Real, “TLSF: A
new dynamic memory allocator for real-time systems,” in
Real-Time Systems, 2004. ECRTS 2004. Proceedings. 16th
Euromicro Conference on. IEEE, 2004, pp. 79–88.

[22] M. Paleczny, C. Vick, and C. Click, “The java hotspot (tm)
server compiler,” in Proceedings of the 2001 Symposium on
Java TM Virtual Machine Research and Technology Sympo-
sium, vol. 1, no. S 1, 2001.

[23] L. Trevisani, S. Danisch, N. Daly, and
J. Nash, “Revise.jl,” 2018. [Online]. Available:
https://github.com/JuliaLang/PackageCompiler.jl

[24] JuliaRobotics, “JuliaRobotics: Robotics powered by Julia,”
2018. [Online]. Available: http://www.juliarobotics.org/

[25] R. Featherstone, Rigid body dynamics algorithms. Springer-
Verlag New York Inc, 2008.

[26] M. L. Felis, “RBDL: an efficient rigid-body dynamics library
using recursive algorithms,” Autonomous Robots, vol. 41,
no. 2, pp. 495–511, 2017.

[27] F. Marco, B. Jonas, D. G. Caldwell, and S. Claudio, “Robco-
gen: a code generator for efficient kinematics and dynamics
of articulated robots, based on domain specific languages,”
Journal of Software Engineering in Robotics, vol. 7, no. 1, pp.
36–54, 2016.

[28] J. Carpentier, F. Valenza, N. Mansard, et al., “Pinocchio: fast
forward and inverse dynamics for poly-articulated systems,”
2015.

[29] J. Carpentier and N. Mansard, “Analytical derivatives of rigid
body dynamics algorithms,” in Robotics: Science and Systems
(RSS 2018), 2018.

[30] V. Duindam and S. Stramigioli, “Singularity-free dynamic
equations of open-chain mechanisms with general holonomic
and nonholonomic joints,” IEEE Transactions on Robotics,
vol. 24, no. 3, pp. 517–526, 2008.

[31] J. Baumgarte, “Stabilization of constraints and integrals of
motion in dynamical systems,” Computer methods in applied
mechanics and engineering, vol. 1, no. 1, pp. 1–16, 1972.

[32] A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett, and A. Zanna,
“Lie-group methods,” Acta numerica, vol. 9, pp. 215–365,
2000.

[33] N. Koenig and A. Howard, “Design and use paradigms for
Gazebo, an open-source multi-robot simulator,” in Proc. 2004
IEEE/RSJ Int. Conf. Intelligent Robots and Systems, vol. 3.
IEEE, 2004, pp. 2149–2154.

[34] P. D. Neuhaus, J. E. Pratt, and M. J. Johnson, “Comprehen-
sive summary of the institute for human and machine cogni-
tion’s experience with littledog,” The International Journal of
Robotics Research, vol. 30, no. 2, pp. 216–235, 2011.

[35] D. W. Marhefka and D. E. Orin, “A compliant contact model
with nonlinear damping for simulation of robotic systems,”
IEEE Transactions on Systems, Man, and Cybernetics-Part
A: Systems and Humans, vol. 29, no. 6, pp. 566–572, 1999.

[36] A. Meurer, C. P. Smith, M. Paprocki, O. Čertík, S. B.
Kirpichev, M. Rocklin, A. Kumar, S. Ivanov, J. K. Moore,
S. Singh, et al., “Sympy: symbolic computing in Python,”
PeerJ Computer Science, vol. 3, p. e103, 2017.

[37] J. Revels, M. Lubin, and T. Papamarkou, “Forward-
mode automatic differentiation in Julia,” arXiv preprint
arXiv:1607.07892, 2016.

[38] L. Benet and D. P. Sanders, “In-
tervalarithmetic.jl,” 2018. [Online]. Available:
https://github.com/JuliaIntervals/IntervalArithmetic.jl

[39] M. Giordano, “Uncertainty propagation with functionally cor-
related quantities,” arXiv preprint arXiv:1610.08716, 2016.

[40] J. H. Clark, “Hierarchical geometric models for visible surface
algorithms,” Communications of the ACM, vol. 19, no. 10, pp.
547–554, 1976.

[41] J. Dirksen, Learning Three. js: the JavaScript 3D library for
WebGL. Packt Publishing Ltd, 2013.

[42] JuliaRobotics, “MeshCatMecha-
nisms.jl,” 2018. [Online]. Available:
https://github.com/JuliaRobotics/MeshCatMechanisms.jl

[43] C. Rackauckas and Q. Nie, “Differentialequations.jl–a per-
formant and feature-rich ecosystem for solving differential
equations in Julia,” Journal of Open Research Software, vol. 5,
no. 1, 2017.

610

Authorized licensed use limited to: National Formosa University. Downloaded on October 18,2020 at 08:55:17 UTC from IEEE Xplore. Restrictions apply.

[44] T. Jansen. Strandbeest. Accessed 13 August, 2018. [Online].
Available: http://www.strandbeest.com

[45] P. K. Mogensen and A. N. Riseth, “Optim: A mathematical
optimization package for julia,” Journal of Open Source Soft-
ware, vol. 3, no. 24, p. 615, 2018.

[46] J. Lofberg, “Yalmip: A toolbox for modeling and optimization
in matlab,” in Computer Aided Control Systems Design, 2004
IEEE International Symposium on. IEEE, 2004, pp. 284–289.

[47] M. Grant, S. Boyd, and Y. Ye, “Cvx: Matlab software for
disciplined convex programming,” 2008.

[48] I. Dunning, J. Huchette, and M. Lubin, “JuMP: A model-
ing language for mathematical optimization,” SIAM Review,
vol. 59, no. 2, pp. 295–320, 2017.

[49] J. Mattingley and S. Boyd, “Cvxgen: A code generator for em-
bedded convex optimization,” Optimization and Engineering,
vol. 13, no. 1, pp. 1–27, 2012.

[50] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd,
“OSQP: An operator splitting solver for quadratic programs,”
arXiv preprint arXiv:1711.08013, 2017.

[51] R. Deits, T. Koolen, and R. Tedrake, “LVIS : Learning
from Value Function Intervals for Contact-Aware Robot Con-
trollers,” Submitted to ICRA 2019., 2018.

[52] A. S. Huang, E. Olson, and D. C. Moore, “LCM: Lightweight
communications and marshalling,” in Intelligent robots and
systems (IROS), 2010 IEEE/RSJ international conference on.
IEEE, 2010, pp. 4057–4062.

[53] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot oper-
ating system,” in ICRA workshop on open source software,
vol. 3, no. 3.2. Kobe, Japan, 2009, p. 5.

[54] B. Landry, Z. Manchester, and M. Pavone, “A differentiable
augmented lagrangian method for bilevel nonlinear optimiza-
tion,” arXiv preprint arXiv:1902.03319, 2019.

[55] B. Jackson, T. Howell, and Z. Manchester,
“TrajectoryOptimization.jl,” 2019. [Online]. Available:
https://github.com/RoboticExplorationLab/TrajectoryOptimization.jl

[56] R. Elandt, “SoftContact.jl,” 2019. [Online]. Available:
https://github.com/ryanelandt/SoftContact.jl

[57] D. E. Orin and A. Goswami, “Centroidal momentum matrix
of a humanoid robot: Structure and properties,” dynamics,
vol. 4, p. 6, 2008.

[58] P. M. Wensing and D. E. Orin, “Improved computation of the
humanoid centroidal dynamics and application for whole-body
control,” International Journal of Humanoid Robotics, vol. 13,
no. 01, p. 1550039, 2016.

611

Authorized licensed use limited to: National Formosa University. Downloaded on October 18,2020 at 08:55:17 UTC from IEEE Xplore. Restrictions apply.

